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Summary

This paper presents the results of applying the n.ethodology of singular perturbations and time
scales (SPATS) to the control of digital flight systems. .\ block-diagonalization method is described that
decouples a full-order, two-time-scale (slow and fast) -liscrete control system into reduced-order, slow
and fast subsystems. Basic properties and numerical ¢ spects of the method are discussed. This study
reveals an interesting fact that singularly perturbed discrete systems can be viewed as two-time-scale
systems. The closed-loop optimal control of the full-order, two-time-scale system involves the solution
of a full-order, algebraic, matrix Riccati equation. Alternatively, by using the block-diagonalization
method described in this paper, the full-order system s decomposed into reduced-order, slow and fast
subsystems. The closed-loop optimal control of the subsystems requires the solution of only reduced-
order, algebraic, matrix Riccati equations. A compcsite, closed-loop, suboptimal control system is
constructed as the sum of the slow and fast, optimal fe:dback controls. The application of this method
to an aircraft model shows close agreement between tl-e exact solution and the decoupled {composite)
solution. The main advantage of the method is the considerable reduction in the overall computational
requirements for the evaluation of optimal guidance and control laws. The significance of the result is
that it can be used for real-time onboard simulation. "'his paper also contains a brief survey of digital
flight systems.

1. Introduction

The dynamics of many systems is described by hizh-order differential equations. Frequently, the
presence of small parameters such as time constants, 1nasses, and moments of inertia is the source for
the increased order of the system. A system in which the suppression of a small parameter is responsible
for the degeneration of the dimension of the system i: called a singularly perturbed system. Such a
system possesses widely separated clusters of eigenvzlues exhibiting “slow” and “fast” phenomena.
The high dimensionality coupled with the two-time-scale (slow and fast) behavior makes the system
computationally “stiff,” with the result that extensive numerical routines are required.

The theory of singular perturbations and time scales (SPATS) in continuous control systems has
reached a level of maturity (refs. 1 to 3) and has been st.ccessfully applied to aerospace problems (refs. 4
to 15). On the other hand, the subject of SPATS in dig:tal flight control systems has not received much
attention so far.

The purpose of this paper is to present a methodoiogy of SPATS to discrete control systems with
an application to an aircraft model. The basic idez underlying this method is to apply a block-
diagonalization procedure to decouple a full-order, two-time-scale system into low-order, slow and fast
subsystems. This procedure offers a considerable redu-tion in the overall computational requirements
for developing optimal guidance and control laws. The significance of the result is that it has possible
applications for real-time onboard implementation. Aiso, this paper contains a brief survey of digital
flight systems. The results presented in this paper are an expanded version of those recently published
by the authors in references 16 to 19.

The organization of the paper is as follows. Sectior 2 describes the concept of digital flight control
and the previous research in this field. The ideas of SFATS in continuous and discrete control systems
are given briefly in section 3. Section 4 presents a blocx-diagonalization procedure to decouple a high-
order, two-time-scale system into low-order, slow and fist subsystems. An aircraft example is provided
to illustrate the method. In section 5, the focus is on the time-scale synthesis of digital, optimal control
systems. The closed-loop, linear, optimal regulation of the original two-time-scale system requires the
solution of a high-order, algebraic, matrix Riccati equation. Alternatively, a composite, closed-loop,
suboptimal control is constructed as the sum of slow ar:d fast, optimal feedback controls, which require
the solution of only low-order, algebraic, matrix Ricca:i equations. Numerical results obtained for an
aircraft example show excellent agreement between th: original (optimal) solution and the composite
(suboptimal) solution which is computationally simple-.

Symbols
A system matrix
A subsystem matrices (¢,7 = 1,2)
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input matrix
input matrix for subsystem (z = 1, 2)

matrix of order (m x n)

CINCI--

matrix of order (n X m)

eigenvalue of { )

3]
—
~—

F feedback matrix
I identity matrix
J performance index
k discrete interval
m order of state, z
n order of state, x
P positive, definite symmetric matrix of Riccati equation
p eigenvalue
Q positive, semidefinite symmetric matrix of order (n+m)x (n+m)
R positive, definite symmetric matrix of order (r x r)
T order of control, u
t time
u control vector of order r
X state vector of order n
y output vector
state vector of order m
€ small, positive perturbation parameter
Subscripts:
c composite mode
f fast mode
g correction mode
s slow mode
0 zero order
Superscripts:
T transpose
(0) zero-order solution
Abbreviations:
ADC analog-to-digital converter
DAC digital-to-analog converter
max maximum
min minimum

A dot over a symbol indicates a derivative with respect to time.



2. Background

In this section, the idea of digital flight control systems is discussed briefly and their advantages
are enumerated. The previous research in digital flight :ontrol is summarized.

A digital control system uses a digital computer to mplement the control logic. The development
of reliable, faster, and inexpensive microcomputers has recently aroused considerable interest in digital
control systems (refs. 20 to 24). The first commercial digital computers in the 1950’s were not fast
enough or small enough to be placed on space vehicles. The NASA Apollo program spurred the
development of smaller and faster computers for the digital control of boosters and spacecraft in
the 1960’s. This technology was transferred to aircrait by NASA in the 1970’s. The invention of
microprocessors in the 1970’s made digital computers very small, fast, and inexpensive. Many military
and civilian aircraft now have digital control systems (re:. 25). Digital control, which has made possible
more accurate and sophisticated autopilot logic, promises to be the focal point in most improvements in
navigation, guidance, and control in the future. A digital flight control system contains analog-to-digital
and digital-to-analog converters (ADC and DAC, respe« tively) as shown in figure 1.
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Figure 1. Concept of digitai flight control.

With adequate redundancy incorporated into the lesign, digital flight control systems ensure
adequate flight safety. The present capabilities for incorporating integrated circuits into lightweight,
low-cost minicomputers and microcomputers make dig:tal implementation of modern flight control
systems especially attractive (refs. 25 to 28).

Another feature of digital implementation is the potential for the synthesis of complex control
systems that involve high-order nonlinearities and that atilize time-sharing for multiple-loop control.
One such complex control structure is an adaptive system that is capable of online adjustment of the
control parameters in response to changing flight charac eristics (ref. 29).

The advantages of digital flight control systems over * heir continuous counterparts are summarized
(ref. 30) as follows:

1) Use of complex control strategies
2) Easy implementability
3) Flexibility in adding or changing functions
4) Repeatability of performance
5) System integration and hardware economy
(6) Reduction in cost, size, weight, and power dissipztion
In the past, there have been many applications of digital control theory for flight systems. The first
application of digital technology to flight control was digital implementation of basic analog autopilot
functions (refs. 31 and 32). Modal control theory has bee:i applied to the design of digital flight control
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systems such as pitch-attitude control systems and roll/yaw control systems for a short takeoff and
landing (STOL) aircraft (refs. 33 to 36). An algorithm was presented for obtaining a reduced-order
or simplified nonlinear model of the F-8 aircraft (ref. 37). A method for the synthesis of a nonlinear,
automatic, flight control system involving an F-8 aircraft has been developed (refs. 35 and 38). A
residue-measure criterion has been employed as an efficient method for model reduction in the design
and analysis of the digital flight control system of NASA’s Space Shuttle (ref. 39). Discrete design
methods have been compared at various sample rates for several different flight modes for the terminal
configured vehicle (TCV) at the Langley Research Center, which is a modified Boeing 737 aircraft
(ref. 40). Research has been conducted by NASA into some advanced control laws for the F-8 digital
fly-by-wire (DFBW) program (refs. 29 and 41).

The analysis and control of large systems has been a formidable task, not only because of the high
order of the systems but also because the majority of these systems possess interacting phenomena of
different (slow and fast) speeds. The simultaneous presence of slow and fast dynamics makes the system
computationally “stiff,” with the result that extensive numerical routines are required. A stiff system,
having a two-time-scale character, need not necessarily be in the singularly perturbed structure.

3. Singular Perturbations and Time Scales

In this section, the definitions of singular perturbations and time scales in continuous and discrete
control systems are given briefly. Broadly speaking, a continuous (discrete) system described by a
differential (difference) equation containing a small parameter is called a singularly perturbed system
if the order of the system is reduced by neglecting the small parameter. Such a system possesses widely
separated clusters of eigenvalues and exhibits a two-time-scale (slow and fast) character.

Continuous Control Systems

Consider briefly the idea of SPATS in continuous control systems and its application to aerospace
problems. Consider a linear time-invariant system such as

x=Ayx+ Ajpz+Bju (x(t =0) = x(0)) (1a)

ez = Ag1x + A2z + Bou (z(t = 0) = z(0)) (1b)

where x and z are n- and m-dimensional state vectors, respectively, and u is an r-dimensional control
vector. The matrices A;; and B; are of appropriate dimensions, and € is a small, positive perturbation
parameter. The (n + m)’ high-order system (egs. (1)) is in the singularly perturbed form in the sense
that by making € = 0 in equations (1), the resulting system is of reduced order n only, and consequently
the degenerate system does not satisfy the initial condition z(0). That is,

x = A1x® + A5z + Bju x@ (¢ = 0) = x(0) (2a)
0= Ayx(® + A%z® + Bou (z(o) (t=0) # z(o)) (2b)

Here, let us note that equation (2a) is a reduced-order system of order n only, with equation (2b) being
an algebraic equation, and the initial condition z(0) is lost in the process of degeneration. The singular
perturbation theory retrieves the lost initial condition. The block diagrams of the full, high-order,
or perturbed system (egs. (1)) and the degenerate, low-order, or unperturbed system (egs. (2)) are
shown in figure 2. Here we assume that the input u is independent of . Otherwise, u becomes u 0).
Also, x and z are predominantly slow and fast state vectors, respectively. In a general two-time-scale
(slow and fast) system, the singular perturbation parameter ¢ does not appear explicitly as shown in
equations (1). The essence of the theory of SPATS is to take advantage of the order reduction associated
with the degeneration and to decouple the original system (egs. (1)) into slow and fast subsystems of
reduced order for further analysis and synthesis.
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Figure 2. Singularly perturbei continuous system.

The theory of SPATS has been successfully applied to aerospace problems described by continuous
control systems (refs. 4 to 15). The digital flight control systems with singular perturbation (or two-
time-scale) character have not received much attention so far.

Discrete Control Systems

For the purpose of synthesizing digital controllers, ~he continuous model (described by differential
equations) of a dynamic system is transferred into a discrete model (described by difference equations)
where the controls are held constant between the samrling intervals (refs. 34, 42, and 43).

The general form for a linear, shift-invariant, singularly perturbed discrete system is given by
(refs. 44 to 47)

x(k+1) = Ay x(k) + 77 Ajpz(k) + Byu(k) (3a)
€2 z(k+1) = £/ Agy x(k) + eAgz z(k) + /By u(k) (3b)

with 0 < i < 1 and 0 < j < 1 where x(k) and z k) are slow and fast state vectors of n- and
m-dimensions, respectively, u(k) is an r-dimensional control vector, ¢ is the singular perturbation
parameter, and A;; and B; are matrices of appropriate dimensionality. The initial-value problem with
x(k=0) = x(0) and z(k=0) = z(0) is formulated.



The three limiting cases of equations (3) result in the following models:

(1) For the C-model (z =0; j = 0),

x(k+1) = A1 x(k) + eAj22z(k) + By u(k) (4a)
z(k+1) = Ag; x(k) + eAgp z(k) + Bou(k) (4b)

where the small parameter € appears in the column of the system matrix.

(2) For the R-model (¢ = 0; 7 =1),

x(k+1) = A1 x(k) + Aj2z(k) + By u(k) (5a)
z(k+1) =cAqy x(k) + eAq9 Z(k) + eBou(k) (5b)

where the small parameter € appears in the row of the system matrix.

(3) For the D-model (i = 1; j = 1),

x(k+1) = Aj1 x(k) + A122(k) + By u(k) (6a)
ez(k+1) = Ag1 x(k) + Ag22(k) + Bz u(k) (6b)

where the small parameter € is positioned in a fashion identical to that of the continuous systems
described by differential equations.

For the present discussion, it is enough to consider the system (egs. (4)) as an initial-value problem
with x(k = 0) = x(0) and z(k = 0) = 2(0). The suppression of the small parameter ¢ in equations (4)
results in the degenerate system

x@(k+1) = Ay xO (k) + B; u(k) (xOk=0) = x(0)) (7a)
2O (k+1) = Agy xO (k) + By u(k) (2O (k =0) # 2(0)) (7b)

Here equation (7a) is a difference equation in x(O)(k) of order n only, whereas equation (7b) is an
algebraic equation. It means that once x(o)(k) is solved from equation (7a), z(o)(k) is automatically
fixed by equation (7b) and z(%)(0) is not, in general, equal to z(0). Thus, the suppression of the small
parameter € in equations (4) leads to a low-order system (egs. (7)) with a consequent loss of the initial
condition z(0). Hence, by definition, equations (4) are in the singularly perturbed form. The original
system (egs. (4)) and the degenerate system (eqs. (7)) are shown in figure 3. Here it is also assumed
that u is independent of ¢; otherwise u(k) becomes u(o)(k) when ¢ is made equal to zero. The theory
of SPATS in discrete systems is of recent origin (refs. 44 to 55). Attempts have been made to apply
the technique to digital flight control systems, but these attempts have been limited mainly to a class
of digital control of continuous systems (refs. 56 to 61).

In this section, the concepts of SPATS in continuous and discrete control systems have been
discussed. In the next section, a method for decoupling a two-time-scale system is presented.

4. Time-Scale Analysis of Digital Control Systems

In this section, attention is focused on time-scale analysis (TSA) of digital control systems. This
is followed by a description of a block-diagonalization procedure to develop a method to decouple a
discrete system into slow and fast subsystems. The basic properties and numerical aspects of these
systems are discussed. An interesting fact is provided showing that singularly perturbed discrete
systems can be viewed as two-time-scale systems. Finally, an aircraft example is given to illustrate the
method (ref. 16).
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Figure 3. Singularly perturb~d discrete system.

Two-Time-Scale System

Consider a linear, shift-invariant, two-time-scale dis:rete system

SEr] = [an au] 6]+ (53] v ®

with initial conditions x(k = 0) = x(0) and z(k = 0) == z(0). It is assumed that the system (eq. (8))
is asymptotically stable and that its eigenspectrum consists of a cluster of n large eigenvalues and a
cluster of m small eigenvalues. Let the eigenvalues of e-juation (8) be arranged as

11| > |ps1] > .- > |psnl > pp1l > - > [Pfml (9)

If the condition
e = ps1l/lpsn <<1 (10)

is satisfied, then the system (eq. (8)) possesses a twc-time-scale (slow and fast) property (refs. 44
and 50). In other words, the stable discrete system (eq. (8)) is said to exhibit a two-time-scale behavior
if the largest absolute eigenvalue of the fast eigenspectrum is much smaller than (i.e., has wide sepa-
ration with) the smallest absolute eigenvalue of the slow eigenspectrum. In the literature, one usually
finds stiffness being stamped on a system in which the ratio of eigenvalues is given by equation (10). This



ratio appears explicitly as the small parameter € in the case of a singularly perturbed system. It is
also noted that the slow modes are generated by large eigenvalues and the fast modes are produced by

small eigenvalues.

In order to block-diagonalize the system (eq. (8)) or separate it into slow and fast subsystems, a
two-stage linear transformation is used. In the first step, the block Ag; is removed to make equation (8)
an upper-triangular matrix by using the transformation

z5(k) = z(k) + Dx(k) (11)
where the (m x n) matrix D is a real root of the Riccati-type algebraic equation
ApD-DA; 1+ DA;D - A9 =0 (12)

Substituting equation (11) into (8) results in

=1 R[5 (12)
where
As=A; —ApD Af=Az+DAj;

B; =DB; + Bs
In the second stage, the transformation
xs(k) = x(k) + Ez(k) (14)

is applied to equation (13) and the (n X m) matrix E is chosen as the solution of the Riccati-type
algebraic equation

EA; - AE+A;=0 (152)
E(A22 + DA3) - (A1 —A12D)E+ A;p =0 (15b)

Then, equation (13) reduces to

st 211580 5

where
B, = (I + ED)B; + EB,

Now the system (eq. (16)) is in the desired decoupled form, as shown in figure 4. Note that the slow
and fast variables x,(k) and z (k) are related with the original state variables x(k) and z(k) by means
of the transformations given in equations (11) and (14), which are combined to form

] A (m
and from which k 1
[)z(((k))] N [—183 (1 ;]‘IJ)E)] [Z,%Zﬂ (18)

Note that the special feature of these transformations is that equation (18) needs no inversions of the
matrices, and hence the simplified computation is derived.
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Figure 4. Decoupled slow ..nd fast subsystems.

The condition given in equation (10) can be written as

e = max |e(Aj)|/ mine(As)] << 1 (19)
where
e(Af):{pfla cey pfm}
e(AS) - {psla sy psn}

The iterative solution of equation (12) is given as (ref. 44)

D,y = (A2D; + D;A12D; — Ayg) ALl (20)
with an initial value of Dg = —AglAl“ll. Similarly fo- equations (15), we have
Eij1 = Aj] (E;Ag + E;DAy + A12DE; + Aj2) (21)

with an initial value of Eg = A;11A12. Substituting tI ese initial values of Dg and Eg into equation (16)
gives

A=A+ ApAyAT Apg=Ag - AxAl AL (22a)
By =B — Aj'A12AnA['B; + A A1B, (22b)
Bjo =Bz — A21A['B; (22¢)
and (k+1)] _ [As O k)]  [B
xs0(k+1 ] _ [ 50 ] [Xso ] [ 30]
= + u(k 23
[Zfo(k+1) 0 Afg Zfo(k) BfO ( ) ( )

Thus, it is seen that a two-time-scale system is decou pled into slow and fast subsystems.



Singularly Perturbed Systems as Two-Time-Scale Systems
We consider the singularly perturbed system (eqs. (4)) and repeat it here for convenience. Thus,

] - [An e [<0] + [B] wee 2

with initial conditions x(k = 0) = x(0) and z(k = 0) = z(0).
Now, substituting the transformation of equation (17) into (24) and replacing E by ¢E allows the
decoupled subsystem to become

il [ X L] (5] &
where As; = A —¢AD A=Ay +DAj

B; = (I, + ¢€EED)B; + ¢EB, B; =DB; + B;
and D and E are the solutions of the Riccati-type algebraic equations

€AgyD — DA + eDAD — Ay =0 (26)

eE(A22 + DA2) — (A1 —eApD)E+ A5, =0 (27)
whose iterative solutions start with the initial values of Dy = —A21A1—11 and Eg = A1_11A12. For a
sufficiently small €, the zero-order approximate solutions are

As0= A Ajo= Az — AyAj A (28a)

By = By Bso =By — Ay A[['B,; (28b)

so that the decoupled subsystem becomes

st(k+1)] [Au 0 ] [Xso(k)J [ B, ]
= + k 29
[zfo(k+1) 0 EAfO Zfo(/c) BfO u( ) ( )
with
xs0(k = 0) = x(0)
z2f0(k = 0) = z(0) — A2 A;!x(0)
Now the system (eq. (29)) is obtained in an alternative way from equation (24) if the singular

perturbation method (SPM) is used. The degenerate (slow) subsystem is obtained by making ¢ = 0 in
equation (24). That is,

xO(k+1) = Ay xO (k) + By u® () (x(0>(k =0) = x(O)) (30a)
2@ (k+1) = Ag; xO(k) + By u©® (k) (z(O)(k =0) # z(O)) (30b)

Here, it is noted that z(k) has lost its initial condition z(0) in the process of degeneration. In order
to recover this lost initial condition, a correction subsystem is used. The transformations between the
original and correction variables are

xg(k) = x(k)/eM (k) = a(k) /< (31a)
ug (k) = u(k)/eF1 (31b)

Substituting equations (31) into (24) allows the transformed system to become

exg(k+1) = Aqxg(k) + Aqg zg(k) + By ug (k) (32a)
2g(k+1) = Az xg(k) + A2z 2g(k) + By ug(k) (32b)

10



The zero-order approximation (¢ = 0) of equations (32) becomes

0= Au xV(k) + A 27 (k) + By ul” (k) (33a)
29 (k+1) = Agy x{V (k) + Ag, 2{” (k) + Baul” (k) (33b)

Rewriting equations (33) produces

xO (k) = —A7] [Am 2" (k) + By ugO)(k)] (34a)
zéo)(k—l—l) = Ago zgo)(k) + Bgo ugo)(k) (34b)

where

Ag = A - Ay AAD
By = B2 — A21A[' By

The total solution consists of the sum of the outer solution given by equations (30) and the correction
solution of equations (34). For the present, to simplify the presentation, u(k) and its associated
functions are omitted. Then (ref. 47),

x(k) = xO (k) + ¥ %2 (k) (35a)
2(k) = 20 (k) + ¢* 287 (k) (35b)

The current interest is only zero-order approximations. i.e., the slow part x(O)(k) of x(k) and the fast

part ¥ zgo)(k) of z(k). Thus, from equations (30) and (34) (omitting input functions),

xO (k+1) = Ay x (k) (36a)
20 (k+1) = Agozl) (k) (36b)
or
20 (k+1) = eAgo2z ) (k) (36¢)
where
20 (k) = e¥ 2{7) k) (37a)
x@ (k = 0) = x(0) (37b)
z£0)(k =0) = zgo) (0
= 2(0) — 2(%(0)
=z(0) — Az AL} x(0) (37¢)

By comparing equations (29) and (36), it is seen that to a zero-order approximation, the degenerate
and correction subsystems of the singular perturbat.on method are the same as the slow and fast
subsystems of the time-scale analysis. This is a result similar to that in continuous systems where the
singular perturbation and time-scale approaches give identical results to a zero-order approximation.
The method is now demonstrated by an aircraft exam ple.

Application to an Aircraft

The methodology described in the previous sectiors is illustrated by the application to an aircraft.
The longitudinal dynamic equations of an aircraft modal are obtained based on a rigid-body assumption
(ref. 62). Also, the angle of attack is assumed to be sinall. The linearized model possesses a two-time-
scale property in the sense that pitch angle, velocity, and altitude are the slow variables and angle

11



of attack and pitch rate are the fast variables, corresponding to phugoid and short-period modes,
respectively. For digital implementation, a zero-order hold is used to obtain the discrete model. The
aircraft under consideration is a twin-engine general aviation aircraft. The discrete model is given by

(ref. 63)

y{k+1) = Ay(k) + Bu(k) (38)
where
x(k) An Ap [Bl]
y(k) [Z(’C)] [A21 A B,
and
z1(k) velocity, ft/sec
za(k) pitch angle, deg
z3(k) altitude, ft
z1{k) angle of attack, deg
z9(k) pitch angular velocity, deg/sec
uy (k) elevator deflection, deg
usz (k) flap deflection, deg
uz (k) throttle position, deg
[ 0.923701 -0.308096 O 0.053043 —0.090367
0.039705 0.9955256 0 —0.107454 0.588883
A= 0.087127 1.899490 1.0 -0.635270 0.394015
—0.035537 0.010123 O 0.007748 0.137407
L 0.069562 —0.012706 O —0.097108 0.287411
( 0.042825 —0.000395 -—0.154048
—0.484628 -0.515359 —0.002237
B=|-0.161525 -0.067522 —0.005257
—0.202010 —-0.289303 0.005061
L —0.806770 —0.852161 —0.006353

The states r;(k) and z3(k) are scaled down by a factor of 100 to facilitate easy representation. The
eigenvalues of the discrete (original) system are given by 1.0, 0.962103 + 0.1753427, 0.217297, and
0.072882, suggesting that there are three slow modes (z;(k), z2(k), and z3(k)) and two fast modes
(z1(k) and z2(k)) with the eigenvalue separation ratio given as [ps1l/|ps3| = 0.222196. The results are
now summarized below for two cases in which the two-time-scale approach is used.

Case I—Zero iterations. Here the initial values Dy and E( are themselves used in obtaining
the decoupled subsystems without resorting to any iterative solutions of the Riccati-type algebraic
equations (26) and (27). Thus,

Do | 0038398 0001715 0
0= | -0.074861 -0.010405 0
0.021141  0.098166
Eo = | —0.108780  0.587615
| —0.430486 —0.730705
[0.914899 -0.309128 0
Aq = |0.087915  1.001837 0
0.141016  1.904675 1.0
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_ [ 0.009600 0 134947
| —0.099961 0 288048

Bsg = | —0.935733 - 0.981356  0.000913
0.513256 0.676144 —0.008690

[ —0.040446 - 0.089654 —0.153556J

B = —0.201197 -0.290202 —0.000858
/0= | ~0.804933 —0.846769  0.005203

The eigenvalues of the slow subsystem are 1.0 and 0.9.8368 + 0.159020y, and the eigenvalues of the
fast subsystem are 0.225595 and 0.072053 with an eiger value separation ratio of 0.232222.

Case 1I—Five iterations. Here the values of D5 and Es, obtained after five iterations of the Riccati
equations (26) and (27), are used for the decoupled subsystems. The following matrices are obtained:
D- — [ 0.023371 —0.006771 0

57 [-0.110005 -0.028361 0

Es = | —0.178397  0.741358

[—0.026374  0.215547
| —0.144412 —1.487336

Ags = | 0.106996 1.011676 1.0
| 0.145317 1.906477 1.0

[0.912520 —0.310327 0}

AL _ | 0009715 0.131307
/5= | -0.099864 0.280473

Bss = | —1.041054 —1.095552 0.005406
1.053315 1.219171 —-0.021322

[ —0.123959 —0.173428 —0.151789}

B, — | 0197728 —0.285¢22 0.001476
f5 = 1-0.797591 —0.837247 0.010657

The eigenvalues of the slow subsystem are 1.0 and 0.962098 + 0.175345j, and the eigenvalues of the
fast subsystem are 0.217307 and 0.072882 with an eigenvalue separation ratio of 0.222207.

The summary of eigenvalues for the original system and the decoupled subsystems is shown in table I.
The eigenvalue separation ratio (consisting of the maxinium of absolute values of fast eigenvalues and
the minimum of absolute values of slow eigenvalues) is s‘iown in table II.

The responses of the original system and the decoupled subsystems are shown in figures 5 to 9
for case I with zero iterations and in figures 10 to 14 fcr case II with five iterations. From both the
figures and the tables, it is clear that the decoupled sulsystems are close to the original system with
considerable reduction in total computational requiremeats.

In this section it has been shown that a full-order, two-time-scale system can be decoupled into
reduced-order, slow and fast subsystems. The technique has been demonstrated by applying it to an
aircraft model. The next section considers the decoupling of optimal discrete control systems.
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5. Time-Scale Synthesis of Digital Optimal Control Systems

In this section a two-time-scale discrete control cystem is considered. The closed-loop, optimal,
linear, quadratic regulator for the system requires the solution of a full-order, algebraic Riccati equation.
Alternatively, the original system is decomposed intc reduced-order, slow and fast subsystems. The
closed-loop optimal control of the subsystems requires the solution of two algebraic Riccati equations of
Jower order than that required for the full-order systeni. A composite, closed-loop suboptimal control is
formed from the sum of the slow and fast feedback opt:mal controls. The main advantage of the method
is a considerable reduction in the overall computationa: requirements for the closed-loop optimal control
of digital flight systems (refs. 18 and 64 to 67).

For the sake of convenience, let us repeat here the stable, linear, shift-invariant discrete control
system given as equation (8):

osiR e L R EART

where the various state variables and the matrices hiive been previously described. The performance
index to be minimized is

7=5 3 TR Qy() +uT (k) Ru(b)] (39)
k=0
where
yT(k) = [xT (1), 2 (k)]
and
Qi Qr2
QL Qn

is a positive, semidefinite symmetric matrix of order (n +m) X (n + m). The matrix R denotes a
positive, definite symmetric matrix of order (r X r).
The closed-loop optimal control is given by (ref. €8)

u(k) = -R7!BTP (I + ER'IBTP)_I Ay(k) (40)

where P, of order (n+m) x (n+m), is the positive, definite symmetric solution of the algebraic, matrix
Riccati equation

-1
P=ATP (1+BR" B’P) A+Q (41)

where

Ay, A12] [31]
A= B=
[A21 Agg B,

The closed-loop optimal system is given by
y(k+1) = (A - BF) y(k) (42)

where ;
F=R!BTP (I + nR"lBTP) A

Instead of directly tackling the original regulator problem described by equations (8) and (39),
one should appropriately decompose it into two regulator problems (approaches) for slow and fast
subsystems. For this, it is necessary to separate the original performance index into the sum of two
performance indices for slow and fast subsystems.
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Separation of Original Performance Index

Approach 1. In approach 1 the original performance index (eq. (39)) has to be represented as the sum
of the performance indices of the slow and fast subsystems. Using the transformation in equation (18)
between the original state variables (x(k) and z(k)) and the subsystem variables (xs(k) and z(k)) in
equation (39) and using us(k) = uys(k) = u(k) as shown in figure 4 results in

N)Iv-a

= o 57 [T (k) Qoo x5 (k) + 27 (k) Qg 2 (k) + ul (k) Ry us (k)
0
+ xz

(k) Qug 27 (k) + 27 (k) Qo x5 (k) + 0] (k) Ry ug (k)| (43)
where

Q11 Qi2 [Is]
QL Qu -D

Q11 Qi2 E
Qf, Qa2 [_(If+DE)}

st = [ISa _DT}

Q;; = [ET, —(I; + DE)7]

Q=L pT) -Qunn Q2 } [( E ]

Q}; —Qu If + DE)

= [ET, (I; + DE)T]

-Qi1 Qu2 ] [Is]
Qf, -Qu D
Note that Qs, = QL; and Rs = R = R/2.
Theii’nce J has to be represented as the sum of J; and Jy, it is necessary to neglect Q s and Qy,.

T =5 3 (K700 Quaxa(k) + uT (k) R s ()] (44)
0

Ty =53 [F R Qppagk) + uF (R Ry ug (k)] (45)
0

As Qs and Qy, have been neglected, this certainly introduces an error in that J will not be equal to
the sum of Js and J;. To take this into account, it is necessary to readjust Qss and Qyy (ref. 65).

Approach 2. Since the present method is simply a design or synthesis problem, first select the
performance indices of the subsystems and then formulate the total performance index of the original

system. Thus, define

[x¥ (k) Qi xs(k) + u] (k) R} ua(k)] (46)

Nalo—t

(27 () Q27 (k) + uT (k) R u (k)| (47)

Nlo—a

gl
ik
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Using the transformation in equation (17) between the subsystem variables x, (k) and z(k) and the
original system variables x(k) and z(k) produces

J=Jg+ J}
= %Z [yT(’C) Q y&) +ul (k)R u(k)] (48)
0
where
Q = [Q,ITI Q'HJ (R'= 2R, = 2R})
12 22

Qi1 = (I + ED)T Q. (I, + D) + DT Q/,D
Qi = (I, + ED)TQ,,E + Q)
Q% =DTQE + Q)

Thus, in equations (46) to (48), first select Q.,, Q'ff, R., and R'f; and then by using D and E, one

obtains Q' and R’. Here it is possible to decouple J J, and J¢ exactly without any approximation.
The original J is dependent on D and E, the deccupling matrices, which may not be of practical
advantage.

Optimal Control of Subsystems

Using the transformation in equation (17) allows the original system in equation (8) to decompose
into slow and fast subsystems as

Xs(k+1) = Asxs() + Bs us(k) (49)

Zf(k+1)=Afzf(wf)+Bfo(k‘) (50)

Now these slow and fast subsystems are optimized with respect to their corresponding performance
indices given in equations (44) and (45), respectively. The slow regulator problem consists of the slow
subsystem of equation (49) and the performance index of equation (44). The fast regulator problem

consists of the fast subsystem of equation (50) and the performance index of equation (45). For

convenience, let Q;s = Q, and Qsf = Qy.
The optimal feedback control of the slow subsystem of equation (49) is given by

-1
u,(k) = -R;1BTP, (13 + B.,.R;IBZPS) Ao xs(k) (51)

where Pg, of order (n x n), is a positive, definite syrimetric solution of the reduced-order, algebraic
Riccati equation

. -1
P, = AP, (I, + B,R;’ BIP,) A,+Q; (52)
Similarly, the optimal feedback control of the fast subsystem of equation (50) becomes
_ _ -1
ug(k) = ~R;'BfP; (I, + B,R;'BIP;) " Af 2;(k) (53)

where Py, of order (m x m), is a positive, definite syrumetric solution of the reduced-order, algebraic
Riccati equation

-1gTp,) !
P;=A/P; (I, +B/R;'BIP,) A;+Q (54)
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The control laws of equations (51) and (53) are rewritten, respectively, as

us(k) = —Fsxs(k) (55)

Uf(k) = -—Ff Zf(k) (56)
where L
F, = R;'BTP, (L +B,R;'BIP,) A,
-1pT “1pTp .\ !
F; = R;'BIP; (I + BfR; BTP,) A;

It is noted that the control laws in equations (51) and (53) are optimal only with respect to the slow
and fast subsystems of equations (49) and (50). It is, however, computationally simpler to determine
these control laws than the optimal control law of equation (40) of the original system (refs. 51 and 52).

Composite Control

The composite control is formulated as the sum of the slow and fast feedback controls given by
equations (51) and (53). That is,

uc(k) = us(k) +uy(k)
= — [Fsxs(k) + Fyzs(k)] (57)

Applying the transformation of equation (17) between the slow and fast variables and the original
variables to equation (57) produces

uc(k) = — [ch x(k) + Ff z(k)] = -F.y(k) (58)

where
F.s = Fs(I; + ED) + FfD

F.;=F;E+F;
F.= [Fc.37 Fcf]

Using the composite control of equation (58) in the original system in equation (8) results in
ye(k+1) = (A — BF) ve(k) (59)

as shown in figure 15. It is known that minimizing the original performance index of equation (39) with
respect to the composite system of equation (59) results in the suboptimal performance index (refs. 65
and 69),

1
Jo =5y (0) Pey(0) (60)
where P, is the positive, definite symmetric solution of the discrete Liapunov equation

P, = (A - BF,)TP (A - BF.) + Q + F{ RF, (61)
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(b) Composite feedback control.

Figure 15. Original and «omposite systems.

Aircraft Example

Consider the same aircraft model as previously given. The eigenvalues of the discrete (original)
model are 1.0, 0.962103 + 0.1753427, 0.217297, and (.072882, an indication that there are three slow
modes (z1(k), z2(k), and z3(k)) and two fast modes (21(k) and z2(k)) with an eigenvalue separation
ratio of 0.222196. The performance measures in eqiation (39) are taken‘as Qi; = Q22 = I and
R;=Rs=1

Usiné the method described in the previous secrion gives the results summarized below. The
positive, definite matrix P of equation (41) is

4.822583  0.427518  0.709917 —0.272287  0.059216
0.427518 11.654952 3.732418 —2.665579  3.042291

P= 0.709917 3.732418 2.699923 —1.096067  0.882337
—0.272287 —2.665579 —1.096067 1.742674 —0.689301
0.059216 3.042291 0.882337 -0.689301 2.015052

Using the above P, the optimal control of equation (40) is obtained with F as

—0.021105 -1.136159 —0.248959 0.260873 —0.507318
F = | -0.110915 -0.700095 —0.191750 0.142104 —0.410844
—0.629305 -0.025190 —0.100651 0.033007  0.003334
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The closed-loop optimal system of equation (42) has the eigenvalues 0.843545, 0.258790 + 0.3266497,
and 0.06457 + 0.047911;.
For the slow and fast subsystems, the corresponding values are

4.621454 1.0561044 0.945863
P, = | 1.051044 13.073895 4.463674
0.945863  4.463674 2.710497

and
_ [ 1.204794 0.244345

Pr=1024435 1914426

For the composite control, the feedback matrix F., obtained from equation (58), is

—0.010457 —1.138702 -0.270112 0.262312 -0.507373
F.= | —0.110238 -0.699239 —0.101678 0.142112 —0.410528
—0.654236 —0.018681 —0.100062 0.031065  0.004602

and the positive, definite matrix P, obtained from the discrete Liapunov equation (61), is

5.045733 0.338736 0.671223 —0.205383 —0.013507
0.338736 11.734399 3.769142 —2.716177  3.103791

P. = 0.671223 3.769142 2.714962 —1.128617  0.918364
—0.205383 —2.716177 -—1.128617  1.790493 —0.744196
—0.013507  3.103791 0.918364 —0.744196  2.083318

The corresponding closed-loop, suboptimal composite system has eigenvalues 0.840132, 0.259351 +
0.3341077, and 0.063358 + 0.046565. The performance indices of the original optimal system and the
composite suboptimal system are obtained as 612.1122 and 616.1734, respectively, with a percentage
error of 0.66347. The central processing time on the CDC CYBER computer required for the original
system is 5.42 sec, whereas that required for the composite system is only 0.44 sec. Throughout the
paper, the computations are performed by using the linear-quadratic-regulator (LQR) design package
ORACLS and commercial mathematical library (ref. 70).

The responses for the various states and controls for the exact (optimal) system and the composite
(suboptimal) system are shown in figures 16 to 23. These responses are obtained for the case when the
aircraft trajectories are to be regulated to the equilibrium conditions of r1, = 190.66 ft/sec, z9, = 0,
z3e = 2000 ft, and 23, = 29¢ = 0 with equilibrium controls.

The above results clearly show an excellent agreement between the exact system and the composite
system. Once again it is noted that the composite control is obtained from the lower-order, slow and
fast subsystems with a considerable reduction in the overall computation (refs. 16 to 18).

Concluding Remarks

This paper describes a time-scale method for digital control systems with an application to an
aircraft. The idea of digital flight control systems was briefly discussed and their advantages were
enumerated. The previous research in digital flight control was summarized. The concepts of singular
perturbations and time scales (SPATS) in continuous and discrete control systems were introduced.

Attention was focused on the time-scale analysis of digital control systems. A block-diagonalization
procedure was described for developing a method to decouple a discrete system into slow and fast
subsystems. Basic properties and numerical aspects of the method were discussed. It was shown that
singularly perturbed discrete systems can be viewed as two-time-scale systems. Finally, an aircraft
example was given to illustrate the method.

The important problem of optimal control of two-time-scale discrete systems was discussed. The
closed-loop, optimal, linear, quadratic regulator for the system requires the solution of a full-order,
algebraic, matrix Riccati equation. Alternatively, the original system was decomposed into reduced-
order slow and fast subsystems. The closed-loop optimal control of the subsystems requires the solution
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of two algebraic Riccati equations of an order lover than that required for the full-order system.
A composite, closed-loop, suboptimal control has been formed from the sum of the slow and fast
optimal feedback controls. Again, numerical results obtained for an aircraft model showed very close
agreement between the exact (optimal) solution and the composite (suboptimal) solution which is
computationally simpler. The main advantage of the method is a considerable reduction in the overall
computational requirements for obtaining the closed-loop, optimal control laws of digital flight systems.
The significance of the methodology is that it can be used for generating optimal guidance and control
strategies for real-time onboard simulation.

NASA Langley Research Center

Hampton, VA 23665-5225
September 15, 1988
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